

Optimal Matrix Sketching over Sliding Windows

Hanyan Yin¹, Dongxie Wen¹, Jiajun Li¹, Zhewei Wei¹, Xiao Zhang¹, Zengfeng Huang², Feifei Li³ ¹ Gaoling School of Artificial Intelligence, Renmin University of China ² School of Data Science, Fudan University Contact: zhewei@ruc.edu.cn

Motivation and Problem Statement

Matrix Sketching

- Many modern datasets are vast and rapid data streams, while computational and storage resources are limited.
- Matrix sketching: approximate large matrix $A \in \mathbb{R}^{n \times d}$ with $B \in \mathbb{R}^{\ell \times d}$, $\ell \ll n$.
- Row-update stream: each update receives a_i , a row of A.
- Covariance error: $\|A^{\mathsf{T}}A B^{\mathsf{T}}B\|_{2} \leq \varepsilon \|A\|_{F}^{2}$.
- Frequent Direction(FD)[Liberty 2013]: $B \in \mathbb{R}^{\ell \times d}$ s.t. $\|A^{\top}A B^{\top}B\|_{2} \leq \frac{1}{\ell} \|A\|_{F}^{2}$.

Space Complexity of DS-FD is Optimal

Theorem 6.1 Any deterministic algorithm which provides the covariance error bound $\|A_W^{\top}A_W - B_W^{\top}B_W\|_2 \le O(\varepsilon)\|A_W\|_F^2$ must uses $O\left(\frac{d}{\varepsilon}\log R\right)$ bits.

Matrix Sketching over Sliding Windows

- Maintain (approximately) $A_W^T A_W$ for time/sequence-based window W.
- Applications: sliding window PCA; event detection; fault monitoring; differential privacy; online learning.
- Existing algorithms for matrix sketching over sliding windows were suboptimal in terms of space complexity.

Sequence-based Normalized Matrix Sketching

Inspiration:

- Connection btw matrix sketching and item frequency problem [Liberty 2013]
- Extension of item frequency to sliding window model [Lee 2006]

Dump Snapshot Frequent Directions (DS-FD)

- Work for $||a_i||_2 = 1$ and window size N.
- Maintain FD sketches C, C' and queues S, S'.
- Expire the outdated elements in queues.
- Perform FD update $[\Sigma, V^{\top}] = FD(C, a_i).$
- If the top singular value $\sigma_1 > \theta = \varepsilon N$, save the top singular vector $\sigma_1 \cdot v_1$ and current timestamp T = i into queues.
- Restart every *N* steps.

Current Window

Proof main idea: construct difficult adversarial input against algorithms.

sketch κ	Sequence-based		Time-based	
	normalized	unnormalized	normalized	unnormalized
DS-FD (This paper)	$O\left(\frac{d}{\varepsilon}\right)$	$O\left(\frac{d}{\varepsilon}\log R\right)$	$O\left(\frac{d}{\varepsilon}\log\varepsilon N\right)$	$O\left(\frac{d}{\varepsilon}\log\varepsilon NR\right)$
Lower bound (This paper)	$\Omega\left(\frac{d}{\varepsilon}\right)$	$\Omega\left(\frac{d}{\varepsilon}\log R\right)$	$\Omega\left(\frac{d}{\varepsilon}\log\varepsilon N\right)$	$\Omega\left(\frac{d}{\varepsilon}\log\varepsilon NR\right)$

Conclusion: the space complexity of DS-FD is optimal.

Experiments and Analysis

Baselines:

Sketches	Update	Space	Window
Sampling	$\frac{d}{\varepsilon^2}\log\log NR$	$\frac{d}{\varepsilon^2}\log NR$	Sequence & time

Unnormalized/Time-based Matrix Sketching

• Unnormalized rows: Work for $||a_i|| \in [1, R]$.

Insights:

• Multiple DS-FD sketches with exponentially incremental dump threshold $\theta = \varepsilon N, 2\varepsilon N, \dots, \varepsilon N R$.

 $\theta = R \varepsilon N$

• Retain only the most recent $O\left(\frac{1}{\varepsilon}\right)$ snapshots in each DS-FD sketch.

LM-FD
$$d \log \varepsilon NR$$
 $\frac{d}{\varepsilon^2} \log \varepsilon NR$ Sequence &
timeDI-FD $\frac{d}{\varepsilon} \log \frac{R}{\varepsilon}$ $\frac{Rd}{\varepsilon} \log \frac{R}{\varepsilon}$ SequenceDS-FD
(Our Work) $\left(\frac{d}{\varepsilon} + \frac{1}{\varepsilon^3}\right) \log \varepsilon NR$ $\frac{d}{\varepsilon} \log \varepsilon NR$ Sequence &
time

Observations:

- DS-FD provides better space-error tradeoffs than Sampling, LM-FD and DI-FD.
- Empirical errors are always lower than the theoretical bound, i.e., $\|A_W^{\top}A_W B_W^{\top}B_W\|_2 \le \varepsilon \|A_W\|_F^2$.
- DS-FD effectively balances update and query times.

Table 4: Update time and query time of all methods with a relative error bound of $\varepsilon = 1/100$ on the BIBD dataset.

Time(ms)	Update time	Query Time
SWR	65.722	157.500
SWOR	3.143	291.936
LM-FD	0.061	3599.310
DI-FD	2.428	59.904
DS-FD	1.053	27.655