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Sampling-based algorithm

Motivation and Problem Statement

Inspiration: 
⚫ Connection btw matrix sketching and item frequency problem [Liberty 2013]
⚫ Extension of item frequency to sliding window model [Lee 2006]

Matrix Sketching
⚫ Many modern datasets are vast and rapid data streams, while computational 

and storage resources are limited.
⚫ Matrix sketching: approximate large matrix 𝑨 ∈ ℝ𝑛×𝑑 with 𝑩 ∈ ℝℓ×𝑑 , ℓ ≪ 𝑛.
⚫ Row-update stream: each update receives 𝒂𝑖, a row of 𝑨.

⚫ Covariance error: 𝑨⊤𝑨 − 𝑩⊤𝑩
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⚫ Frequent Direction(FD)[Liberty 2013]:𝑩 ∈ ℝℓ×𝑑 s.t. 𝑨⊤𝑨 − 𝑩⊤𝑩
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Matrix Sketching over Sliding Windows
⚫ Maintain (approximately) 𝑨𝑊

𝑇 𝑨𝑊 for time/sequence-based window 𝑊. 
⚫ Applications: sliding window PCA; event detection; fault monitoring; 

differential privacy; online learning.
⚫ Existing algorithms for matrix sketching over sliding windows were sub-

optimal in terms of space complexity.

Baselines:

Experiments and Analysis

⚫ Unnormalized rows: Work for 𝒂𝑖 ∈ 1, 𝑅 .

Observations:
⚫ DS-FD provides better space-error tradeoffs than Sampling, LM-FD and DI-FD.

⚫ Empirical errors are always lower than the theoretical bound, i.e., ฮ

ฮ
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⚫ DS-FD effectively balances update and query times.

Theorem 6.1 Any deterministic algorithm which provides the covariance error 

bound 𝑨𝑊
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Sequence-based Normalized Matrix Sketching

Space Complexity of DS-FD is Optimal
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Dump Snapshot Frequent Directions (DS-FD)
⚫ Work for 𝒂𝑖 2 = 1 and window size 𝑁. 
⚫ Maintain FD sketches 𝑪, 𝑪′ and queues 𝒮, 𝒮′.
⚫ Expire the outdated elements in queues. 
⚫ Perform FD update 𝚺, 𝑽⊤ = FD(𝑪, 𝒂𝑖).
⚫ If the top singular value 𝜎1 > 𝜃 = 𝜀𝑁, save the top singular vector 𝜎1 ⋅ 𝒗1 and 

current timestamp 𝑇 = 𝑖 into queues.
⚫ Restart every 𝑁 steps.
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⚫ Error bound:
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Insights: 
⚫ Multiple DS-FD sketches with exponentially incremental dump threshold 𝜃 =

𝜀𝑁, 2𝜀𝑁,… , 𝜀𝑁𝑅.

⚫ Retain only the most recent 𝑂
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𝜀
 snapshots in each DS-FD sketch.
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⚫ Error bound:
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Proof main idea: construct difficult adversarial input against algorithms.

Conclusion: the space complexity of DS-FD is optimal.
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