
Unnormalized/Time-based Matrix Sketching

Optimal Matrix Sketching over Sliding Windows
Hanyan Yin1, Dongxie Wen1, Jiajun Li1, Zhewei Wei1, Xiao Zhang1,

Zengfeng Huang2, Feifei Li3
1 Gaoling School of Artificial Intelligence, Renmin University of China

2 School of Data Science, Fudan University 3 Alibaba Group
Contact: zhewei@ruc.edu.cn

Sampling-based algorithm

Motivation and Problem Statement

Inspiration:
⚫ Connection btw matrix sketching and item frequency problem [Liberty 2013]
⚫ Extension of item frequency to sliding window model [Lee 2006]

Matrix Sketching
⚫ Many modern datasets are vast and rapid data streams, while computational

and storage resources are limited.
⚫ Matrix sketching: approximate large matrix 𝑨 ∈ ℝ𝑛×𝑑 with 𝑩 ∈ ℝℓ×𝑑 , ℓ ≪ 𝑛.
⚫ Row-update stream: each update receives 𝒂𝑖, a row of 𝑨.

⚫ Covariance error: 𝑨⊤𝑨 − 𝑩⊤𝑩
2
≤ 𝜀 𝑨 𝐹

2 .

⚫ Frequent Direction(FD)[Liberty 2013]:𝑩 ∈ ℝℓ×𝑑 s.t. 𝑨⊤𝑨 − 𝑩⊤𝑩
2
≤

1

ℓ
𝑨 𝐹

2 .

Matrix Sketching over Sliding Windows
⚫ Maintain (approximately) 𝑨𝑊

𝑇 𝑨𝑊 for time/sequence-based window 𝑊.
⚫ Applications: sliding window PCA; event detection; fault monitoring;

differential privacy; online learning.
⚫ Existing algorithms for matrix sketching over sliding windows were sub-

optimal in terms of space complexity.

Baselines:

Experiments and Analysis

⚫ Unnormalized rows: Work for 𝒂𝑖 ∈ 1, 𝑅 .

Observations:
⚫ DS-FD provides better space-error tradeoffs than Sampling, LM-FD and DI-FD.

⚫ Empirical errors are always lower than the theoretical bound, i.e., ฮ

ฮ

𝑨𝑊
⊤ 𝑨𝑊 −

𝑩𝑊
⊤ 𝑩𝑊 2

≤ 𝜀 𝑨𝑊 𝐹
2 .

⚫ DS-FD effectively balances update and query times.

Theorem 6.1 Any deterministic algorithm which provides the covariance error

bound 𝑨𝑊
⊤ 𝑨𝑊 −𝑩𝑊

⊤ 𝑩𝑊 2
≤ 𝑂 𝜀 𝑨𝑊 𝐹

2 must uses 𝑂
𝑑

𝜀
log 𝑅 bits.

Sequence-based Normalized Matrix Sketching

Space Complexity of DS-FD is Optimal

(a) SYNTHETIC (b) BIBD (c) PAMAP

(d) RAIL (d) YEAR

Dump Snapshot Frequent Directions (DS-FD)
⚫ Work for 𝒂𝑖 2 = 1 and window size 𝑁.
⚫ Maintain FD sketches 𝑪, 𝑪′ and queues 𝒮, 𝒮′.
⚫ Expire the outdated elements in queues.
⚫ Perform FD update 𝚺, 𝑽⊤ = FD(𝑪, 𝒂𝑖).
⚫ If the top singular value 𝜎1 > 𝜃 = 𝜀𝑁, save the top singular vector 𝜎1 ⋅ 𝒗1 and

current timestamp 𝑇 = 𝑖 into queues.
⚫ Restart every 𝑁 steps.

𝑘 − 1 𝑁 𝑇 − 𝑁 𝑘𝑁 𝑇
𝑪′

Current Window

Dumped snapshots in queue 𝒮

Expired snapshots in queue 𝒮

Time

𝑪𝑇−1

𝒂𝑇
=

𝑼 𝚺 𝑽⊤

⋅ ⋅

𝑪𝑇

queue 𝒮

dump

⚫ Error bound:

𝑨𝑊
⊤ 𝑨𝑊 −𝑩𝑊

⊤ 𝑩𝑊 2
≤ 𝜀𝑁

⚫ Space: 𝑂
𝑑

𝜀

⚫ Update time:

𝑂 𝑑ℓ + ℓ3 ,

ℓ = min
1

𝜀
, 𝑑

Insights:
⚫ Multiple DS-FD sketches with exponentially incremental dump threshold 𝜃 =

𝜀𝑁, 2𝜀𝑁,… , 𝜀𝑁𝑅.

⚫ Retain only the most recent 𝑂
1

𝜀
 snapshots in each DS-FD sketch.

𝑇 − 𝑁

Level 0

Level 1

Level 2

Level log 𝑅

𝑇

Time

.

.

.

.

.

.

𝜃 = 𝜀𝑁

𝜃 = 2𝜀𝑁

𝜃 = 4𝜀𝑁

𝜃 = 𝑅𝜀𝑁
.
.
.

Current Window

Expired Snapshot Dropped Snapshot Saved Snapshot

⚫ Error bound:

𝑨𝑊
⊤ 𝑨𝑊 −𝑩𝑊

⊤ 𝑩𝑊 2
≤ 𝜀 𝑨𝑊 𝐹

2 ⚫ Space: 𝑂
𝑑

𝜀
log 𝑅

Proof main idea: construct difficult adversarial input against algorithms.

Conclusion: the space complexity of DS-FD is optimal.

𝑡 − 𝑁 + 1

Block log 𝑅
𝑁/4 𝑁/8 ℓ/2

𝑡

𝟎

𝑡 + 𝑁/4

𝑑
-d

im

1 1 1 1 1 1 1 1 1

𝟎…
𝑁𝑅

ℓ
𝑨

𝑁𝑅

2ℓ
𝑨 𝑅𝑨2𝑅𝑨

𝑅

2
𝑨

𝑁

ℓ
𝑨

2𝑁

ℓ
𝑨…

ℓ/4 ℓ/4 ℓ/4
Block 0
ℓ/4 𝑁/4

Sliding Window 1

Sliding Window 2

Sketches Update Space Window

Sampling
𝑑

𝜀2
log log𝑁𝑅

𝑑

𝜀2
log𝑁𝑅

Sequence &
time

LM-FD 𝑑 log 𝜀𝑁𝑅
𝑑

𝜀2
log 𝜀𝑁𝑅

Sequence &
time

DI-FD
𝑑

𝜀
log

𝑅

𝜀

𝑅𝑑

𝜀
log

𝑅

𝜀
Sequence

DS-FD
(Our Work)

𝑑

𝜀
+

1

𝜀3
log 𝜀𝑁𝑅

𝑑

𝜀
log 𝜀𝑁𝑅

Sequence &
time

	Slide 1

